Adaptive Regularization for Image Segmentation Using Local Image Curvature Cues
نویسندگان
چکیده
Image segmentation techniques typically require proper weighting of competing data fidelity and regularization terms. Conventionally, the associated parameters are set through tedious trial and error procedures and kept constant over the image. However, spatially varying structural characteristics, such as object curvature, combined with varying noise and imaging artifacts, significantly complicate the selection process of segmentation parameters. In this work, we propose a novel approach for automating the parameter selection by employing a robust structural cue to prevent excessive regularization of trusted (i.e. low noise) high curvature image regions. Our approach autonomously adapts local regularization weights by combining local measures of image curvature and edge evidence that are gated by a signal reliability measure. We demonstrate the utility and favorable performance of our approach within two major segmentation frameworks, graph cuts and active contours, and present quantitative and qualitative results on a variety of natural and medical images.
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملOptimization of Weighted Curvature for Image Segmentation
Minimization of boundary curvature is a classic regularization technique for image segmentation in the presence of noisy image data. Techniques for minimizing curvature have historically been derived from descent methods which could be trapped in a local minimum and therefore required a good initialization. Recently, combinatorial optimization techniques have been applied to the optimization of...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملSalt and Pepper Noise Removal using Pixon-based Segmentation and Adaptive Median Filter
Removing salt and pepper noise is an active research area in image processing. In this paper, a two-phase method is proposed for removing salt and pepper noise while preserving edges and fine details. In the first phase, noise candidate pixels are detected which are likely to be contaminated by noise. In the second phase, only noise candidate pixels are restored using adaptive median filter. In...
متن کاملRobust Fuzzy Content Based Regularization Technique in Super Resolution Imaging
Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010